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ABSTRACT

In 1978, P. Rabinowitz proved a theorem concerned with the existence of a

nontrivial periodic solution of a nonlinear wave equation with a continuous

increasing superlinear nonlinear term. In this paper we present a new and

simpler proof of this theorem and relax an assumption on the nonlinear term,

which is a discontinuous nondecreasing function.
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SIGNIFICANCE AND EXPLANATION

The existence of a nontrivial periodic solution of a nonlinear wave

equation was obtained by P. Rabinowitz. We present a new and simpler proof

and extend the result to a more general case.

For

i t

The responsibility for the wording and views expressed in this descriptive
summ~ary lies with MRC, and not with the authors of this report.
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A NEW PROOF AND AN EXTENSION OF A THEOREM OF P. RABINOWITZ

CONCERNING NONLINEAR WAVE EQUATIONS.

K. C. Changt Shujie Li G. C. Dong
Peking University & Academica Sinica & Zhejiang University &

University of Wisconsin University of Wisconsin University of Wisconsin

This paper concerns a new simpler proof of the existence of a nontrivial

periodic solution of a nonlinear wave equation. Namely, we prove the

following theorem:

Theorem Suppose that

R1 R1 -1
(GI ) g: R + R is a nondecreasing function such that g (0) is a

closed interval including 0 .

(G2 )  a E [ (0, 1/ ) and a constant Co such that

G t g(t - 0) for t > C > 0G(t) f= g •~d <
0 6 t 9(t + 0) for t 4 -C0 < 0

(G3) lim g(t)/t = 0
t+0

Then there exists a nontrivial (weak) solution u e L of

u tt - U + g(u) 0 for (x,t) E Q := (0,n) x (0,2w) (1)

(I) u(0,t) = u(',t) 0 (2)

u(x,0) = u(x,2w) (3)

It is well known, that the pioneering work of P. Rabinowitz [1) made a

breakthrough and stimulated great interest in this problem. The assumption

(GI ) in our theorem is slightly weaker than that in [I], where g is assumed

to be continuous. Recently, H. Br~zis, J. M. Coron and L. Nirenberg (21

tPartially supported by the University of Wisconsin Graduate School Research

Committee.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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presented a simpler proof of the theorem of Rabinowitz, under slightly

different conditions. Their method of proof, which is based on a duality

argument and a modified (P. S. condition and) mountain pass lemma, is quite

powerful. After learning of their paper, we tried to better understand their

method, and to modify their proof so that one does not have to change the (P.

S. condition and the) mountain pass lemma. There are two main differences

between the techniques of [2] and this paper: (1) In (2] , the inverse

function of g is truncated into a bounded function, but in this paper, it is

truncated into a power function, as a result of which the mountain pass

condition becomes easier to check and it is not necessary to assume the period

is small; (2) An e-perturbation technique is used here, in order to ensure

that the P. S. condition holds. It seems that our technique is easier to

extend to case where g(u) is discontinuous.

Let Au = utt - Uxx be the wave operator acting on functions in L

satisfying (2), (3). Let N(A) be the kernel of A , and R(A) be the range

of A . It is known [2] that
271

N(A) = {p(t+x) - p(t-x)IP is 21-periodic, p C L loc(R) and f p = 01
0

Let K be the inverse of A , K is defined on R(A), and bounded in the

following sense [2] :

UKuU 4 C 11ull . (4)
~L L

Let g be the maximal monotone graph associated with the nondecreasing

function g , i.e. g is the set-valued map: u + [g(u-0), g(u+0)]. Let

h be the inverse maximal monotone graph of g , i.e. for u e h(v) if and

only if v e g(u). According to the assumption (G2 ), g(u) + ± as

u + - (see below (23)), except if g = 0 (but in this case the existence

of nontrivial solutions is obvious), therefore to define a nondecreasing

R1 R1
function h : + R such that h(v) = [h(v-0), h(v+0)]
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According to the assumption (G), 0 C h(0)

IQ As in [2] , we begin by converting our problem (I) into the

following problem:

(II) Find v C E :- {v e Lp ' (Q)l f v p = 0 V e C LP(I) n N(A))} where
1+1 1I + - - I , p C (2, . ) and X e N(A) such that v,Xp P, esatisfyip p

x e K v + h(v)

For if v is a nontrivial solution of (5) , set u = X - Kv , we have

Au + v= -

u E h(v) •

Then

Au + g (u) 3 0

Then by Theorem 3.1 in [3] , u is also a nontrivial solution of the problem

(I.

20. Before solving the problem (II) we consider a truncated and

perturbed problem:

Find v C E , X C N(A) such that

X w Kv + hMr(v) (6)

where

h M,(v) = hM (v) + CvIP-2 V

and

h(M)(1 + - (v-M)P -  if v > S

h M(v) = h(v) if 1v1 r M
h- V+Ml - 1  if v < -M

M-1011 +MP' I lvM1

Let

H Cv) - (s) ds . (7)
0
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H (v) is a convex function, provided that h is nondecreasing. we
?4,C M'e

look for critical points of the following functional on E

f M,(v) = 1/2 f K v 0 v + f H M, (v). (8)

It is worth pointing out that the functional fM, is not differentiable

on the space E , but only locally Lipschitzian. The critical point v0  of r
f M, is understood in the generalized sense, i.e., c f fCM(v0) where af

is the generalized gradient of f (cf. [4][5]).

Note that

af MCv) ca a 1 f Kv. v + a f H M'(v)

= KV + af CMC(v)

The functional v + f HM, (v) is convex and the generalized gradient for a

convex functional coincides with its subdifferential. The Hahn Banach

separation theorem implies that the subdifferential of f H M,(v) on the

space E is equal to h M,(v) - X where X C N(A), This proves

af M, (v) c Kv + h M(v) - X

Therefore, if v0  is a critical point of f M, ' then it solves the relation

(6).

30. Now we apply the mountain pass lemma (for locally Lip. functionals

(cf. (4], Theorem 3.4) to prove the existence of a nontrivial critical point

of f M,"

The mountain pass lemma reads as follows:

Let X be a Banach space, let f be a locally Lipschitzian function

defined on X . Assume the following conditions on f are satisfied:

(1). The (P.A.)+ condition. i.e. Any sequence tx } in X , alongn

which

-4-



constants a ,PC2  such that 0 < a 1 f(X) a2 and

A(x ) : Min Ow I + 0 as n + *
w C af(x n

n n

possesses a convergent subsequence.

(2) There exists r, p > 0 with f > 0 in the ball without

S-. B r\6 and fj b p where Sr  is the sphere with radius r .

(3) There is an e c X , e * 0 such that f(e) = 0 • Then f has a

nontrivial critical point.

Verification of the (P. S.)+  condition.

Let (v I be a sequence in E such that V

X(v ) 1dM 1w I 0 as n + 0. (10)
n w S f (v n Lp

n ME n

We shall prove that vn possesses a convergent subsequence in E

(1) Firstly, we show vn is bounded Kv 0 C (in the following,
n

various constants are all denoted by C if there is no confusion). We have

a 1 4 f 1/2 (Kvn)vn +f HM' (vn) 4 a2 (11)

w + Xn 6 K vn +hM,e(Vn) (12)

where 1wI = A(v ) and Xn C N(A). Equation (12) implies that

-n n + n' n with nn hM (v n ) such that

Wn + Xn K n n(13)
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Combining (11) with (13), we obtain

S .E (vn ) -1/2 n• v n  2 + 1/2 (v ),v * . (14)

However, there is a constant CM , such that

±+E:)Ivip' 2 v _ CM hM (v-O) < h, (v+O) -2 CM (15)
(a j + £)IvI v

for v (or <) 0, where aM _ h(* M), and hence

H (v) > (a + 6) Ivp lv 16)

M p, N

where aM = min{aM, a} Substituting (15), (16) into (14), we have

(27 -1/2 - f CMIVn a2 + 1/2A(vn)lVnI 

Thus,

Iv I L C (17)

(2) Secondly, since vn  possesses a weakly convergent subsequence,

which we still denote by vn suppose v v , the following relation:n

lim f n *V=-f Kv* v (18)
n,m+- m

follows from (13) and the compactness of K

(3) Finally, we prove the subsequence vn converges to v strongly

in LP. If not, 6 > 0 and subsequences {v 1, {v } such thatn. m.
1 1

Iv - v I 6 vi.n i  mi Lp '

On the one hand, (18) implies
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IN
n- m)(v - V) + 0 as i + (19)

On the other hand, since hM(v) is nondecreasing,

a n m " )( n iV mi fi  f + f
V niv {yealv (y)V (y)) {YCVn. (y)<v (y))

n. m n. m.1 1 1 1

> C f (Iv I p -2 V - Ivi lp'-2v)(V - V)

= e f jX v (y) + (1-X)v (yp-2v()- (y)

n. n.(y ) Ip ' 2 (v ( -) )m 2

2-- I
(f (y) - V (y) IP ')P

n Mn. 22-W ic2-P > 0 (Holder inequality)

( Ix,, (y) + (1-))v (y)P P' p

Q i i

* p

for some X C (0,1). This contradicts (19). Thus vn + V in LP

strongly.

Verification of the condition:

f M,(V) s p > 0 , for small r > 0

where p is a constant, independent of C , and Sr is the sphere with

radius r

According to the assumption (G3 ), we have

H (v)
lim - ffi + . (21)
v0_7
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Combining (21) with (16) yields

c 6 v2if lvi 4 6

HM(v) ) 6C6 ivI if 6 < Ivi < T

vp lvi if Ivi > T
2I

1 [where C, + +- as 6 + 0 , and T (I_- By (4)

C 1 2 
Mp

f (V) ) - 11V 2 + C6  f v2 + 6 C6  f Ivl + Ot! f Ivl
2 L1 IvI+6 6<Ivl<T 2 Ivl)T

Since

( v Iv2 f() IV12

IVi(6 Iri<6

it follows that

1 1

IvI < mes(Q)P( f lvi p )p
Ivl>T IvI>T

f Ivj p ' < ( f v2 )2 mesU2) 1-P / 2

Iv1l 6  Ivl( 6

f f Ivl p  4 lvi,
Tp ' - I  641vj<T 6<lvl<T

and that f Ivi < 1 for (f ivip ]'j = r with r sufficiently small.

2
3 p

Firstly, we fix 6 > 0 such that C 6 > i C mes(l) + mes(SI) '  and then

choose r small enough such that



2

oc f IvI - c 1  f IvI) 2  ( f IvIV' P
6<lvl<T 2 6<lvI<T 6<IvlT

2

-' p f Iv'-- v
2 IvT 2 IvI>T IvI)T

It follows that

2 2 2

f (v) 0 ( f IvIp )P + ( f Ivl p )P' + ( f tvIP )P
S Ivi<6 vvj4T IVI>T

2
> vI )P9 = r 2 for 11vi , r
P nP Lp

2
where C is a constant depends on p * Let p = c r , which is a constant

p p

independent of e

Verification of the condition

a e e E such that f (e) = 0 with e > r

In fact, taking et = tW1, where f is an eigenfunction of Kt!
associated with a negative eigenvalue, let = -K ' P1 > 0 . Therefore

^I(e(.~- + -' o+ bl Ct i
fA(e 1 t2 + 1 2  (a+ C) I I P1, + C t f I 1 + --, as t +

where a i max{h(M) - h(-M)}. Thus a a t > 0 such that
S14MP -

f (t p) =0 , with Ilt lJ >r.
14,5 1 1

Applying the mountain pass lemma, there exists a critical

point V ME of f such that

fM, (VM,) p

-9-



40 Return to the unmodified problem

By the characterization of the critical value

fM, (vM, ) ) Max f M,(se) C, (22)
Selo,1]

where constant C does not depend on e or M . In fact, with no loss of

generality, we assume 0 < 6 <1/2 and CO > 1 in the assumption (G2 ),

i.e., G(u) < 0 u g(u - 0) as t > CO

By an approximation procedure using differentiable functions, we see

1

C u < G(u) where C1  is a constant.

Thus
C --1 C1

g(u-O) ) 7 u -u p -1  (23)

and we have

h(v + 0) < C2 vp,-1  (24)

where C = 1 '  This implies
2 C 1

H(v) 4 C2 VP + C 3  V v > 0

Similarly, for v < 0 , we have

h(v - 0) -C2 lvl" 1  (24)

and

H(v) < C2 IvlP 1 + C 3

Since k
SH(v) if Ivi 4 M

H M(v) 11!I

(H(v) i h(±M)[Iv.MI + Iv±v if Ivl > M

we have

H (v) 4 C4IvI' + C5  (25)

-10-



where C4  and C5  are constants, independent of M . Substituting (25) into

(23), we see

f vM (VM ) ( Max f (se) < Max f (t)MeML sc [0,1I] fM,L tcE[0,-] fM,c

C0'1 t [00b

max 2 + C6 (C4+1)t
p ' + C7] ( C8 .

The constant C8  is independent of e and M i.e. (22) holds.

Repeating the procedure performed in verifying the P.S. condition, we

obtain

livIM 'F , ( C (C does not depend on c and M too).

Therefore there is a weakly convergent subsequence v v , with
M

liv ii C . We are going to prove that vM is a nontrivial critical point
Lp

of fM," In fact, by the monotonicity of hM , we have K
(E (i - M)v i ") ; 0 0 V C E.

for each i £ h M(V), £ h Since

a X C N(A) such that X c K vM,4 + hM, (VM,£

we have

f (-Kv i IV I P'-2 vv - 0 > 0
S i i Li

Set C - VM + t , V n L E. Due to the weakly upper semi-

continuity of the set-valued map ; - hM(4M) (cf. [4) §1, prop. (6)), we get

S M(V) such that

f (K Vm + Yn) 0 V n E

i.e. 3 X c N(A) such that

X £ K vM + hM(v m ) .
i _fM.



According to the convexity of HM and the lower semi-continuity of

f HM(v) , it follows

f M,(v) = lir fM, (v C p > 0.
i i

Lastly in order to get rid of the influence of M , we shall prove the

following

50 a priori estimate: 2 constant C, independent of M such that

I1v11l0 4 C - (26)
L

If (26) holds, then v M  is a solution of the problem II for M > C

It has already been proved that

v < C (27)

and by (24) and (24') K
Jh(v j 0)1 4 C2 IvI . 2V

Thus

h M (V 0)1 ( C3 vI

which implies

Ii h (VM * 0)11 4 C4  (28)
M Lp 4

Moreover, it follows from (4) and (27) that

Ii K vM1i < C (29)
Lao0 5L

so we obtain

11XMIIp < C6  for XM e K vM + hM (v) * (30)
L

By the definition of hM , in order to get the estimate (26), we only need an

L a priori bound for XM i.e.

IXM I1 < C7 (31)

L

-12-
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According to [6]

XM(xt) - qM(x + t) - qM(t - x) (32)

where
1

q(t)= [XM(x,t-x) - XM(X,t+x)]dx * (33)

We know q. C LP(0,2w) from (30), so that

|qM|L(0,21r) < C8

It is easily seen that

fi vt(x,t-x) - v,(x,t+x)]dx = 0 for a.e.t (34)

and from (29) and (32) we have

-Cs + %(t+x) - c4 (t-x) r u,(xt) 4 C5 + qm(t+x) - 1 (t-x)

Let gm be the inverse function of hM, which coincides with g before

truncation

gM(-c5 + %(t+x) - qM(t-x)-0) 4 vM(x,t) 4 gM(C5 + %(t+x) - %(t-x)+0).

One deduces from (34) that

f2% + q -t) qM(s))ds ( 0 a.e.t. (35)

0

where g,(U) = gM(u-0) - gM(-u+O) is an odd increasing function. Fixing t

such that qM(t) > 0 we get

qM(t) qM(t)

gM(-C5 + qM(t) - qm(s)) ) -2) if qM(s) + C5 ( 2

M(-c s + %q(t) - qm(s)) -g 1M(q(s) + C) if M(s) + C5 > --- .

Substituting these two inequalities into (35), one obtains

qs(t q( t) ) ~
gM(  )mes{s C (0,2W)jq (s) i- - C51 C5)ds a.et

0

(36)

-13-



Since q. E LP-I(0'2K) and gM is of the growth power p-1 , the RHS of

(36) is bounded by a constant

CMFirstly, we prove CM L 1(0,21). In fact,

u such that g(u) > M

. UI such that mes(s E (0,2w)IqM(s) 4 u,1  > w

Let n - max (2u0 , 2(u, + C5 )) . If ess sup qM(t) were not bounded,
t C (0,2w)

then the set S - {t C (0,2-f)IqM(t) > n} would not be a null set. But for

t £ S , (36) cannot hold. This is a contradiction. Similarly, we prove

that ess inf qM(t) is bounded too.
t c (0,2v)

Lastly, set

-M ess sup qM(t)t C (0,2w)

we shall prove jM is bounded in M . Let = {s £ (0,2w)JqM(s)

M 2C8 2C8
- } . . Then mes(E) - , i.e. mes(C ) ) 2v- - . Let
2 M UM

t £ T = {t e (0,2ir)Iq(t) > jM - 1}. This is not a null set. Substituting

into (35), we get

2C8
(21r - ;-M )(-C 5 -1 + -) 4 2w w (C+ U5 .

This proves p M is bounded. Similarly, we estimate ess inf qM(t) i.e.
t C (0,2w)

tIqMi < C9 , it implies (31) provided by (32).
L

The proof is complete.

Remark 1 The above method can be extended to attack the following more

general problem:

-14-
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u - u + g(t,x;u) = 0 for (xt) c (0,1W) X (0,T)

u(O,t) = u(l,t) - 0

U(X,O) = u(X,T)

where T = , is a rational number, and g(t,x,u) is a Baire measurable

function defined on (0,w) x (0,T) x R , satisfying the following

conditions

(G I  g(t,x,0) = 0 , and for fixed (t,x), g(t,x,.) is strictly

increasing in u.

(G2)@ a £ (0, 42) and a constant CO > 0 such that

8 u g(t,xu-0) for u C 0

G(t,x,u) =f g(t,x,s)ds 4
0

{6 u g(t,x,u+0) for u 4 -C0

(G3)I lim u = 0 uniformly with respect to
u+O

(t,x) C (0,W) x (0,T).

(G4)' g(t,x,u) is optimal in the sense discussed in [3]

Remark 2. We would like to emphasize a difference between [2) and our work.

In [2], under slightly weaker growth conditions than (G2 ) and G3 ), Brezis,

Coron and Nirenberg have proved the existence of a nontrivial solution for

periods which are small rational multiples of 2w . If g(t,x,u) does not

depend on t, of course such a solution is also a 2w periodic solution.

But, if g(t,x,u) does depend on T , their method does not seem to work.

We wish to express our grateful thanks to Professor P. Rabinowitz for his

kindly help.
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